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ABSTRACT

GENES THAT MATTER: SURVIVAL MODELING IN TCGA-BRCA WITH

TREATMENT INTERACTIONS

David Pratt

August 2025

High-dimensional genomic data offer both promise and challenges for identifying

clinically relevant biomarkers. This study developed a parallelized survival modeling

pipeline to identify genes associated with overall survival in breast cancer, with a

focus on gene-by-treatment interactions and patient heterogeneity. RNA-Seq data

from female patients in the TCGA-BRCA cohort were analyzed. Univariate Cox

proportional hazards models were used to screen genes, adjusting for age, race/ethnicity,

treatment status, and cancer stage. A LASSO-penalized Cox regression was fit across

2000 random seeds to assess feature stability. Genes were filtered by expression

level, statistical significance, and hazard ratios (effect sizes) in either direction, then

re-evaluated in a multivariable Cox model. Several genes with statistically significant

treatment interactions were identified, including novel candidates not present in

established prognostic panels. These findings highlight the value of interaction-aware

survival modeling for improving personalized prognostic prediction in breast cancer

and underscore the importance of accounting for treatment heterogeneity in high-

dimensional genomic analyses.
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CHAPTER 1

INTRODUCTION

Breast cancer remains one of the most prevalent and biologically complex malignancies

affecting women worldwide. Although improvements in early detection and therapeutic

strategies have significantly enhanced survival outcomes, considerable heterogeneity

in prognosis and treatment response persists. This variation underscores the need for

a more nuanced understanding of the molecular features that drive treatment efficacy

and long-term survival.

The integration of high-throughput genomic data into clinical oncology holds

immense potential to address these challenges. RNA sequencing (RNA-Seq), in

particular, enables comprehensive profiling of gene expression across tumors (Love

et al., 2014). However, the dimensionality and complexity of transcriptomic data

introduce substantial statistical and computational challenges (Fan and Lv, 2008;

Zhao and Li, 2012). Methods capable of handling this scale, while maintaining

interpretability and robustness, are essential for translating genomic insights into

clinical applications.

Survival analysis provides a natural framework for studying time-to-event

outcomes, such as overall survival, in the context of cancer research. The Cox

proportional hazards (PH) model remains one of the most widely used tools in this

domain due to its flexibility and semi-parametric nature (Cox, 1972; Therneau and

Grambsch, 2000). When extended to high-dimensional settings, the Cox model can

be used to test associations between gene expression and survival, and to evaluate

how these associations may be modified by clinical factors such as treatment exposure

(Tibshirani, 1997; Katzman et al., 2018).
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1.1 The Curse of Dimensionality in Genomic Data

Genomic datasets often contain tens of thousands of features (e.g., gene expression

values) but only a few hundred, or fewer, samples. This discrepancy between the

number of predictors (p) and the number of observations (n) introduces what is

commonly referred to as the curse of dimensionality. As dimensionality increases, the

volume of the feature space grows exponentially, and data points become increasingly

sparse. Traditional statistical models, such as ordinary least squares regression,

break down in this regime due to non-identifiability, multicollinearity, and overfitting.

Furthermore, distances between data points lose discriminative power, and irrelevant

features can obscure the signal of interest.

These challenges necessitate the use of dimensionality reduction techniques

capable of identifying a sparse subset of informative predictors while preserving

model stability and interpretability. In this context, the Least Absolute Shrinkage

and Selection Operator (LASSO) is particularly attractive because it performs both

continuous shrinkage and automatic variable selection in high-dimensional settings

(Tibshirani, 1996).

1.2 Dimensionality Reduction in High-Dimensional Genomics via LASSO

High-throughput genomic assays such as RNA-Seq generate datasets with tens of

thousands of gene-level measurements per sample, resulting in a high-dimensional

setting where the number of features (p) greatly exceeds the number of observations

(n). This “p ≫ n” structure poses serious challenges for classical statistical modeling,

including non-uniqueness of parameter estimates, overfitting, and poor generalizability.

Dimensionality reduction is thus an essential preprocessing step in such settings,

particularly when the goal is to identify a parsimonious set of features associated with

a clinical outcome such as overall survival.
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The LASSO, introduced by Tibshirani (1996), is particularly well-suited for

dimensionality reduction in genomic contexts. By imposing an ℓ1 penalty on the

magnitude of regression coefficients, LASSO performs both regularization and feature

selection, shrinking many coefficients exactly to zero. This results in a sparse model

that retains only the most informative predictors, a desirable property in genomics

where most genes are not differentially expressed or associated with the outcome.

Unlike unsupervised methods such as principal component analysis (PCA),

which reduce dimensionality based on variance alone, LASSO is supervised and

outcome-oriented. It identifies features that contribute directly to the predictive

signal for survival, making it more interpretable in translational biomedical research.

Additionally, LASSO integrates seamlessly into Cox PH models, allowing penalized

regression in the presence of right-censored time-to-event data (Tibshirani, 1997).

In this thesis, we apply a LASSO-penalized Cox model via the glmnet package

(Friedman et al., 2010), using 10-fold cross-validation to select the regularization

parameter λ that minimizes partial likelihood deviance. The resulting model includes

a reduced set of genes with nonzero coefficients, which are then used in downstream

multivariate and interaction modeling. This strategy ensures computational scalability,

avoids overfitting, and enhances biological interpretability by prioritizing a concise list

of candidate biomarkers.

Alternative methods for high-dimensional survival analysis include ridge re-

gression, elastic net, and unpenalized screening-based approaches. However, ridge

regression does not yield sparse solutions, and elastic net introduces a second tun-

ing parameter. LASSO strikes a balance between interpretability, parsimony, and

computational efficiency, making it especially appropriate for feature selection in

transcriptomic survival analysis (Hastie et al., 2015).
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1.3 Proposed Work

The Cancer Genome Atlas (TCGA) offers a rich resource of matched genomic and

clinical data across diverse cancer types. This thesis focuses on analyzing RNA-Seq

data from the TCGA Breast Invasive Carcinoma (TCGA-BRCA) cohort. The primary

objective is to identify genes whose expression levels interact with treatment status to

influence patient survival. This work emphasizes both marginal and interaction effects,

with a particular focus on uncovering genes whose prognostic relevance is conditional

upon treatment.

To this end, a scalable and reproducible computational pipeline using R and

Bioconductor was implemented (Huber et al., 2015; R Core Team, 2024). The pipeline

incorporates normalization (Love et al., 2014), filtering, univariate screening, effect size-

based selection, LASSO-penalized Cox regression (Tibshirani, 1996, 1997; Friedman

et al., 2010), and multivariate interaction modeling. This approach enables the

prioritization of genes with strong evidence of treatment-modified prognostic value.

Key contributions of this thesis include: (1) a fully documented and parallelized

workflow for interaction modeling in survival data (Microsoft and Weston, 2022;

Corporation and Weston, 2022), (2) incorporation of effect size criteria in gene

selection, and (3) evaluation of model stability and assumptions in a high-performance

computing environment (Schoenfeld, 1982; Grambsch and Therneau, 1994). The results

offer a biologically interpretable gene set with potential implications for personalized

oncology and biomarker discovery.

The remainder of this manuscript is organized as follows: the next section

describes the statistical theory, dataset, modeling strategy, and computational tools

used in this project; Section 3 discusses the results of the gene-level analyses; and the

final section discusses limitations, implications, and future directions.
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CHAPTER 2

METHODS

2.1 Theoretical Foundation of the Cox PH Model

The Cox PH model, introduced by Cox (1972), is a semiparametric model widely used

in survival analysis. It defines the hazard function for an individual with covariates x

at time t as:

h(t | x) = h0(t) exp(x
⊤β) (2.1)

where:

• h(t | x) is the hazard function at time t for a subject with covariate vector x,

• h0(t) is an unspecified, non-negative baseline hazard function,

• β is a vector of regression coefficients.

The model assumes the hazard ratio between any two individuals is constant

over time:

h(t | x1)

h(t | x2)
= exp

(

(x1 − x2)
⊤β

)

(2.2)

This is known as the proportional hazards assumption, and it is central to the

interpretability of the model.

2.1.1 Interpretation and Application

Each coefficient βj represents the log-hazard ratio associated with covariate xj . A unit

increase in xj corresponds to a multiplicative change of exp(βj) in the hazard rate,
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assuming other covariates are held constant.

In this thesis, we apply the Cox model to assess the relationship between survival

and high-dimensional molecular covariates (e.g., gene expression), while adjusting for

clinical variables such as age, race, and treatment. A typical model specification takes

the form:

Surv(time, status) ∼ age + race_ethnicity + treatments × genes

(2.3)

This formulation allows us to assess both main gene effects and gene-treatment

interaction effects, and to accommodate censoring in survival data.

2.1.2 Partial Likelihood Estimation

Since h0(t) is unspecified, Cox proposed estimating β via the partial likelihood, which

avoids direct estimation of the baseline hazard:

L(β) =
D
∏

i=1

exp(x⊤
i β)

∑

j∈Ri
exp(x⊤

j β)
(2.4)

where:

• D is the number of observed events (e.g., deaths),

• Ri is the risk set at time ti, containing all individuals at risk just prior to ti.

Maximizing this partial likelihood yields the maximum partial likelihood esti-

mator β̂, which under standard regularity conditions is consistent and asymptotically

normal.

2.2 Model Diagnostics for the Cox PH Model

The Cox PH model relies on several key assumptions:
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1. Proportional Hazards: Hazard ratios between individuals remain constant

over time.

2. Independent Censoring: Censoring is non-informative and unrelated to

survival.

3. Linearity in Log-Hazard: Covariates affect the log-hazard additively and

linearly.

4. Correct Model Specification: All relevant confounders are included and

measured without error.

Violations of these assumptions can lead to biased estimates or invalid inference.

In survival analysis, verifying the assumptions of the Cox proportional hazards model

is critical to ensure valid inference and interpretable results. A primary diagnostic

tool for this purpose is the use of Schoenfeld residuals, which assess whether the

proportional hazards assumption holds over time.

The proportional hazards assumption posits that the hazard ratio between

any two individuals is constant over time. The Schoenfeld residuals, introduced by

Schoenfeld (1982), are used to assess the time-dependence of covariates.

For the i-th individual who experiences an event at time ti, the Schoenfeld

residual for covariate j is defined as:

r
(Sch)
ij = xij − x̄j(ti)

where x̄j(ti) is the risk-set weighted average of covariate j at time ti:

x̄j(ti) =

∑

k∈R(ti)
xkj exp(β̂

⊤xk)
∑

k∈R(ti)
exp(β̂⊤xk)

with R(ti) denoting the risk set at time ti.
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Under the PH assumption, these residuals should be uncorrelated with time.

A test for non-zero correlation, such as a scaled Schoenfeld residual plot against time

with a locally weighted scatterplot smoothing (LOESS) curve, is often used to detect

violations. A non-random pattern indicates a time-varying covariate effect, suggesting

violation of the PH assumption Grambsch and Therneau (1994).

2.3 Data Analysis Workflow

2.3.1 Initial Data Acquisition

Gene expression and clinical data were obtained from The Cancer Genome At-

las (TCGA) Breast Invasive Carcinoma (TCGA-BRCA) cohort. A preprocessed

SummarizedExperiment object containing unstranded RNA-Seq counts and metadata

was loaded from TCGA_data.rda. Only primary tumor samples with available clinical

annotations were retained for downstream analysis.

The clinical metadata were filtered to include only female patients with com-

plete data on survival time, age at diagnosis, race, and ethnicity. The original

dataset included 1,110 patients (1,098 females and 12 males); restricting the analysis

to females removed the 12 male cases. Time-to-event was defined as the maxi-

mum of days_to_death and days_to_last_follow_up, converted to years. Vital

status was encoded as a binary outcome (Dead = 1, Alive = 0). A composite

race_ethnicity variable was constructed prioritizing Hispanic ethnicity; non-reported

or low-frequency groups were collapsed as appropriate. American Joint Committee on

Cancer (AJCC) pathologic stage was treated as a categorical covariate. Treatment

status was encoded as a binary indicator based on the presence of any “yes” entry in

the treatment_or_therapy field. Patients with incomplete covariate or survival data

were excluded. A total of 1,047 female patients were retained for analysis, each with

a matched RNA-Seq profile and full clinical annotation.
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Figure 2.1: Combined Flowchart. Parallel preprocessing and modeling pipeline for
TCGA-BRCA data. Clinical and gene expression data streams are joined by patient
ID prior to LASSO and final Cox modeling.

A visual summary of the full preprocessing and modeling pipeline is provided

in Figure 2.1, highlighting the major decision points and transformations applied to

the data prior to survival analysis.

2.3.2 Gene Filtering and Normalization

Unstranded raw RNA-Seq count data were extracted and filtered to retain genes with

at least 10 counts in at least 10 patients (approximately 1% prevalence). Normalization
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was performed using the median-of-ratios method implemented in the DESeq2 package.

The resulting normalized counts were log2-transformed (adding a pseudocount of 1)

to stabilize variance across expression levels. A final matrix of 34,599 genes across

1,047 patients was used for downstream modeling.

2.3.3 Univariate Cox Proportional Hazard Screening

Given the ultrahigh dimensionality of RNA-Seq data—where the number of genes

(p) far exceeds the number of samples (n)—modeling all variables simultaneously is

computationally infeasible and statistically unstable. To address this, we fit marginal

Cox PH models for each gene, incorporating a treatment–gene interaction term,

and extracted the nominal p-value associated with that interaction. To reduce

dimensionality and identify candidate genes for penalized regression, univariate Cox

PH models were fit for each gene using the following specification:

Surv(time, status) ∼ age + race_ethnicity + treatments × geneg (2.5)

Both main effects and gene-treatment interactions were evaluated. For each

gene g, the coefficients, standard errors, hazard ratios, z-statistics, and p-values for the

gene and the interaction term were extracted and stored in a results matrix. Genes

with p-values < 0.05 for either the main effect or interaction term were retained for

penalized modeling.

This approach is motivated by the framework of Sure Independence Screening

(SIS) proposed by Fan and Lv (2008), which demonstrates that marginal models can be

used to screen variables in ultrahigh-dimensional settings with theoretical guarantees

for retaining the truly important variables under certain regularity conditions. In

survival analysis, this concept has been extended to Cox models by Zhao and Li
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(2012), who showed that marginal screening based on partial likelihood score tests

can effectively reduce dimensionality while preserving predictive signal. Furthermore,

Simon et al. (2003) highlight the utility of p-value filtering to prioritize biologically

meaningful gene–treatment interactions in high-throughput settings.

Although this screening step does not account for multicollinearity or complex

gene–gene dependencies, it serves as an efficient and theoretically supported method to

reduce the candidate feature space prior to applying multivariate penalized regression

(e.g., LASSO). This hybrid strategy balances computational scalability with statistical

rigor, making it well-suited for genomic survival analysis.

To enhance interpretability and prioritize genes with substantial biological or

clinical relevance, a percentile-based hazard ratio (HR) filter was applied following

initial screening. Genes were retained if either their main effect HR or their gene–

treatment interaction HR fell outside the central 97% of the empirical distribution—i.e.,

below the 1.5th percentile or above the 98.5th percentile. This dual filtering step

focused the analysis on genes with strong or unusual associations with survival, whether

protective or deleterious, and helped reduce noise from weak or unstable effects. The

HR thresholds were computed jointly across all screened genes and applied uniformly

to both effect types. Genes meeting either criterion were retained for downstream

penalized modeling.

2.3.4 Penalized Cox Modeling with LASSO

To address the high-dimensional setting where the number of predictors (p) greatly

exceeds the number of samples (n), the Least Absolute Shrinkage and Selection

Operator (LASSO) was used for simultaneous regularization and variable selection.

LASSO adds an ℓ1 penalty to the regression coefficients:

β̂
lasso

= argmin
β

{

−ℓ(β) + λ

p
∑

j=1

|βj|

}

(2.6)
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where ℓ(β) is the partial log-likelihood and λ controls the strength of pe-

nalization. The ℓ1 penalty forces many coefficients to exactly zero, yielding sparse

models that improve interpretability and help identify candidate biomarkers and

gene–treatment interactions (Tibshirani, 1996; Hastie et al., 2015).

Genes passing the univariate screening step were further filtered based on the

empirical distribution of hazard ratios (HRs) to prioritize features with substantial

effects. Specifically, genes were retained if either their main effect HR or their gene–

treatment interaction HR fell below the 1.5th percentile or above the 98.5th percentile

of the empirical HR distribution. This dual filter targeted genes with strong or unusual

associations with survival, whether protective or deleterious, and reduced noise from

weak or unstable effects. HR thresholds were computed jointly across all screened

genes and applied uniformly to both effect types. This process yielded a total of 998

genes for penalized modeling.

A Cox LASSO model was then fit using the glmnet package, which minimizes

the negative partial log-likelihood with an ℓ1 penalty applied to the gene and gene–

treatment interaction coefficients. The design matrix included patient-level covariates

(age, race/ethnicity, treatment, AJCC stage) and selected genes, with explicit gene–

treatment interaction terms. To ensure clinical covariates remained in the model, they

were assigned a penalty factor of zero (unpenalized), while all gene-related terms were

subject to ℓ1 regularization. All predictors were standardized internally by glmnet

prior to fitting. The tuning parameter λ was selected via 10-fold cross-validation,

using the value that minimized the partial likelihood deviance.

To assess stability, the entire LASSO fitting procedure was repeated across 2000

deterministic seeds. Coefficients were aggregated across runs, and genes were retained

as “stable” if they appeared in at least 475 of the 2000 models with a consistent

coefficient sign. This yielded 13 genes, which were carried forward into the final

multivariable Cox model.
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2.3.5 Final Cox PH Model

Genes appearing in ≥475 LASSO models and showing consistent directionality were

included in the final multivariable Cox model. Stratified Cox regression was used to ac-

count for non-proportional hazards by strata in ajcc_stage_numeric and treatments.

The final model specification was:

Surv(time, status) ∼ age + race_ethnicity + strata(ajcc_pathologic_stage)

+ strata(treatments) +
∑

g

geneg +
∑

g

(

geneg × treatments
)

(2.7)

Only genes with statistically significant effects (p < 0.05) in the final model were

interpreted. Model coefficients were visualized using forest plots, and Kaplan–Meier

curves were generated for selected genes stratified by treatment status.

2.3.6 Residual Analysis and Signal Stability

Schoenfeld residuals were calculated for each covariate in the final Cox model to

assess the proportional hazards assumption. Residuals were plotted against time with

LOESS smoothing, where substantial deviation from a flat trend was interpreted as

evidence of time-dependent effects.
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CHAPTER 3

RESULTS

3.1 Demographic and Descriptive Characteristics

Summary statistics for age and race/ethnicity distributions across the overall cohort

and by treatment status are shown in Tables 3.1 and 3.2. The mean age of the cohort

was 58.67 years, with a standard deviation (SD) of 12.89. Patients receiving treatment

were slightly younger on average (mean = 57.98 years) compared to untreated patients

(mean = 61.91 years). The interquartile range shows this trend persists across the age

distribution, suggesting age may be a confounding factor in survival outcomes.

Race/ethnicity distributions were relatively stable between treated and un-

treated groups, with the majority of patients identifying as White (67.4% overall),

followed by Black or African American (16.7%). Small differences were observed in the

percentage of Hispanic or Latino individuals, with treated patients comprising 4.2%

versus only 0.5% among untreated. The percentage of "Not Reported" was modest

but larger in the untreated group (11.4%), which may impact subgroup analyses.

Table 3.1: Age Summary by Treatment Group

Group n Mean SD Q1 Median Q3

Overall 1047 58.67 12.89 49.21 58.77 67.72
Treated 862 57.98 12.41 48.56 58.32 66.19
Untreated 185 61.91 14.51 52.75 62.18 72.35

3.2 Final Cox PH Model

The final multivariable Cox PH model was fit using a reduced set of predictors,

including clinical covariates, selected gene expression terms, and gene–treatment

14



Table 3.2: Race/ethnicity counts and percentages, stratified by treatment status.

Race/Ethnicity Overall (n=1047) Treated (n=862) Untreated (n=185)

White 706 (67.4%) 578 (67.1%) 128 (69.2%)
Asian 45 (4.3%) 37 (4.3%) 8 (4.3%)
Black or African American 175 (16.7%) 148 (17.2%) 27 (14.6%)
Hispanic or Latino 37 (3.5%) 36 (4.2%) 1 (0.5%)
Not Reported 84 (8.0%) 63 (7.3%) 21 (11.4%)

interactions identified via stability-based LASSO selection.

Table 4.1 summarizes the estimated hazard ratios (HRs), 95% confidence

intervals (CIs), and significance codes for each covariate in the final model. Age was

significantly associated with increased hazard (HR = 1.0428, p < 0.001). Several genes

demonstrated protective or deleterious associations: for example, ENSG00000212452.1

was significantly protective (HR = 0.6810, p < 0.01), while ENSG00000197081.16

was associated with increased hazard (HR = 2.0599, p < 0.001). The main effect

of ENSG00000253474.2 was also significant and protective (HR = 0.4205, 95% CI:

0.2129–0.8304, p < 0.05).

Three gene–treatment interaction terms were retained in the final model. No-

tably, the interaction involving ENSG00000271653.1 was significant (HR = 2.0831,

95% CI: 1.0260–4.2294, p < 0.05), suggesting a potential modifying effect of treatment.

The interaction between treatment and ENSG00000136560.14 was also significant (HR

= 0.3605, 95% CI: 0.1358–0.9571, p < 0.05), indicating possible treatment sensitivity

for patients with elevated expression of that gene. Finally, ENSG00000253474.2 also

exhibited a strong treatment interaction effect (HR = 2.2547, 95% CI: 1.1018–4.6143,

p < 0.05), indicating that the survival benefit associated with higher expression may

be modulated by treatment status.
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Table 3.3: Final Cox PH Model: Significant and Marginal Terms with Hazard Ratios
and Confidence Intervals

Covariate Sig. HR CI Lower CI Upper

age *** 1.0428 1.0234 1.0626

asian_ethnicity 0.6043 0.1331 2.7436

black_ethnicity 1.0998 0.6039 2.0031

hispanic_ethnicity 0.2273 0.0228 2.2708

not_reported_ethnicity ** 0.1926 0.0561 0.6607

ENSG00000041880.14 ** 0.6005 0.4410 0.8177

ENSG00000088256.9 * 1.6394 1.0270 2.6170

ENSG00000100099.21 0.7043 0.4440 1.1171

ENSG00000108582.12 ** 0.6312 0.4794 0.8309

ENSG00000124568.12 * 0.6200 0.4184 0.9185

ENSG00000128463.13 . 1.6838 0.9797 2.8938

ENSG00000136560.14 1.6458 0.6698 4.0437

ENSG00000136694.9 0.7098 0.4707 1.0704

ENSG00000138835.22 . 1.5435 0.9554 2.4937

ENSG00000142686.8 ** 0.4545 0.2821 0.7322

ENSG00000144711.16 0.8513 0.3576 2.0265

ENSG00000160953.16 1.3904 0.8770 2.2045

ENSG00000165943.5 ** 0.6052 0.4167 0.8791

ENSG00000166140.17 1.2436 0.7901 1.9574

ENSG00000177030.17 * 0.6711 0.4536 0.9928

ENSG00000188707.6 1.0035 0.6414 1.5701

ENSG00000197081.16 *** 2.0599 1.3757 3.0845

ENSG00000212452.1 ** 0.6810 0.5364 0.8646

ENSG00000235237.1 . 0.6251 0.3700 1.0561

Continued on next page
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Table 3.3 – continued from previous page

Covariate Sig. HR CI Lower CI Upper

ENSG00000253474.2 * 0.4205 0.2129 0.8304

ENSG00000260048.2 ** 0.6866 0.5331 0.8842

ENSG00000260913.1 0.7621 0.5486 1.0587

ENSG00000265943.1 *** 0.5982 0.4651 0.7694

ENSG00000271653.1 0.6266 0.3195 1.2287

ENSG00000276805.2 . 1.3096 0.9628 1.7812

Treatment × ENSG00000136560.14 * 0.3605 0.1358 0.9571

Treatment × ENSG00000144711.16 . 2.2930 0.8853 5.9390

Treatment × ENSG00000188707.6 0.8857 0.5299 1.4804

Treatment × ENSG00000235237.1 1.5324 0.8475 2.7706

Treatment × ENSG00000253474.2 * 2.2547 1.1018 4.6143

Treatment × ENSG00000271653.1 * 2.0831 1.0260 4.2294

Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

These results highlight a set of genes with significant main or interaction effects

on survival. Together with clinical covariates, these features form a parsimonious

model with strong interpretability and potential translational relevance.

3.3 Discussion of Main Effects and Interactions

The final Cox proportional hazards (PH) model integrated both clinical variables and

gene expression features, along with selected interaction terms between treatment

status and gene expression. This section interprets the contribution of each predictor

type to overall survival in the TCGA-BRCA cohort.
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Clinical Covariates. Age was the only clinical covariate significantly associated

with hazard (HR = 1.04, p < 0.001), indicating that each additional year of age

conferred a 4% increase in risk of death. Ethnicity variables were modeled relative to

White (non-Hispanic) patients as the reference group. Most ethnic subgroups did not

reach conventional levels of significance. However, the "Not Reported" ethnicity group

was significantly associated with reduced hazard (HR = 0.19, p < 0.01), potentially

reflecting data censoring or a hidden confounder. Other race/ethnicity categories

showed wide confidence intervals and non-significant p-values, possibly due to small

subgroup sizes.

Gene Main Effects. Several genes demonstrated statistically significant associations

with overall survival:

• ENSG00000041880.14 (PARP3): HR = 0.6005 (p < 0.01) — protective.

• ENSG00000088256.9 (GNA11): HR = 1.6394 (p < 0.05) — risk-enhancing.

• ENSG00000108582.12 (CPD): HR = 0.6312 (p < 0.01) — protective.

• ENSG00000124568.12 (SLC17A1): HR = 0.6200 (p < 0.05) — protective.

• ENSG00000142686.8 (C1orf216): HR = 0.4545 (p < 0.01) — protective.

• ENSG00000165943.5 (MOAP1): HR = 0.6052 (p < 0.01) — protective.

• ENSG00000177030.17 (DEAF1): HR = 0.6711 (p < 0.05) — protective.

• ENSG00000197081.16 (IGF2R): HR = 2.0599 (p < 0.001) — risk-enhancing.

• ENSG00000212452.1 (SNORD69): HR = 0.6810 (p < 0.01) — protective.

• ENSG00000253474.2 (novel transcript): HR = 0.4205 (p < 0.05) — protective.

• ENSG00000260048.2 (IGHV1OR16-3): HR = 0.6866 (p < 0.01) — protective.
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• ENSG00000265943.1 (RP11-739L10.1): HR = 0.5982 (p < 0.001) — protective.

These genes were selected through high-dimensional modeling across 2000

penalized seeds and demonstrated consistent directionality. Notably, several immune-

related genes (e.g., HLA-DRA, IFI30, PTGFRN) and poorly characterized noncoding

RNAs were included, indicating potential roles in immune modulation and tumor

regulation.

Gene–Treatment Interactions. The model retained several interaction terms

between treatment status and gene expression. These interaction effects highlight

genes whose impact on survival varies depending on whether the patient received

treatment.

• Treatment × ENSG00000136560.14: HR = 0.3605 (p < 0.05) — a strong

protective interaction, suggesting enhanced benefit from treatment at higher

expression levels.

• Treatment × ENSG00000144711.16: HR = 2.2930 (p < 0.1) — marginally

significant deleterious interaction; patients with higher expression may derive

less benefit from treatment.

• Treatment × ENSG00000188707.6: HR = 0.8857 (ns) — non-significant inter-

action.

• Treatment × ENSG00000235237.1: HR = 1.5324 (ns) — non-significant inter-

action.

• Treatment × ENSG00000253474.2: HR = 2.2547 (p < 0.05) — significant

deleterious interaction; treatment may associate with worse outcomes in patients

with high expression.
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• Treatment × ENSG00000271653.1: HR = 2.0831 (p < 0.05) — significant

deleterious interaction.

These results suggest that specific genes may serve as molecular markers of

treatment response heterogeneity. Particularly, the deleterious interaction effects

for ENSG00000253474.2 and ENSG00000271653.1 point to the potential for adverse

treatment responses in molecularly defined subgroups.

Summary. Together, the significant main effects and interaction terms support a

model in which both intrinsic gene expression patterns and their modulation by treat-

ment influence survival. Immune-related genes and non-coding transcripts emerged as

important predictors, consistent with growing evidence for the role of tumor–immune

dynamics and noncoding regulation in breast cancer prognosis. Stratified or personal-

ized treatment strategies guided by molecular signatures may be a fruitful direction

for further study.

Model Stability and Overfitting

The comparison between the single-seed and consensus forest plots (Figures 3.3–3.6)

highlights important concerns regarding model stability. Notably, several terms

appearing in the single-seed model are absent from the consensus model derived from

2000 seeds, and vice versa. This lack of overlap suggests that reliance on a single

LASSO run may capture spurious associations driven by random sampling variation

or noise, rather than robust signal. The consensus-based approach, by contrast,

identifies features that demonstrate consistent associations with survival across many

resampled iterations. This supports the use of stability selection as a safeguard against

overfitting and reinforces the credibility of the terms retained in the final model.

In high-dimensional settings such as this, model interpretability and reproducibility

are enhanced by emphasizing variables that persist under repeated subsampling and
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penalization.

Figure 3.1: Forest plot from Cox model using seed = 105541. This model illustrates
how initialization can affect both gene inclusion and hazard ratio estimation.
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Figure 3.2: Forest plot from Cox model using seed = 127352. Compared to Seed
105541, this model selects a different subset of genes and produces notably different
hazard ratios.
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Figure 3.3: Forest plot from Cox model using seed = 140284. This example further
illustrates instability, with multiple coefficient estimates and interactions diverging
from the other seeds.
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Figure 3.4: Forest plot of the final Cox model after consensus-based selection across
2000 seeds. Terms shown were retained in at least 23.75% of bootstrap replicates and
represent stable gene–treatment associations.

Table 3.4: Presence of significant genes across three single-seed LASSO runs and the
final multi-seed model. The Census column counts the number of models in which
each gene was present.

Gene Seed 105541 Seed 27352 Seed 40284 Final Model Census

ENSG00000041880.14 1 1 1 1 4
ENSG00000088256.9 1 0 0 0 1
ENSG00000108582.12 1 1 1 1 4
ENSG00000124568.12 1 1 1 1 4
ENSG00000142686.8 1 1 1 1 4
ENSG00000165943.5 1 1 1 1 4
ENSG00000177030.17 1 1 1 1 4
ENSG00000197081.16 1 1 1 1 4
ENSG00000212452.1 1 1 1 1 4
ENSG00000253474.2 1 1 0 0 2
ENSG00000260048.2 1 1 1 1 4
ENSG00000265943.1 1 0 1 0 2
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Table 3.5: Jaccard similarity between the sets of selected genes from three single-seed
LASSO runs and the final multi-seed model. Values range from 0 (no overlap) to 1
(identical sets), with higher values indicating greater similarity in selected gene sets.

Seed 105541 Seed 27352 Seed 40284 Final Model

Seed 105541 1.00 0.83 0.83 0.75
Seed 27352 0.83 1.00 0.82 0.90
Seed 40284 0.83 0.82 1.00 0.90
Final Model 0.75 0.90 0.90 1.00

The consistency of gene selection across models provides insight into the

stability of the identified biomarkers. As shown in Table 3.5, several genes appear

in all single-seed LASSO runs as well as in the final multi-seed model, indicating

robust signal detection rather than artifacts of a particular random seed. This overlap

underscores the reliability of these genes as potential prognostic markers and justifies

their prioritization for downstream biological interpretation and validation.

In contrast, the final model, derived from 2000 LASSO fits across distinct

deterministic seeds, retains only features consistently selected across resampled runs.

The fact that many genes appear in only one or a few single-seed models, yet are

absent from the consensus model, supports the interpretation that such terms may

reflect noise or random fluctuations rather than robust biological signal. This validates

the use of stability selection as a safeguard against overfitting and as a necessary step

for reproducible inference in penalized survival modeling.

3.4 Model Diagnostics and Residuals

Proportional hazards assumptions were evaluated using scaled Schoenfeld residuals

for each covariate in the final Cox model. Visual inspection of residual plots showed

no major departures from proportionality. Formal tests—both global and covariate-

specific—corroborated these findings, confirming that the PH assumption held across

all covariates.
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Figure 3.5: Scaled Schoenfeld residuals for covariates in the final Cox model. AJCC
stage and treatment status were stratified due to observed time-dependent effects.

Figure 3.5 displays the scaled Schoenfeld residuals from the final Cox propor-

tional hazards model, providing visual evidence for the validity of the proportional

hazards assumption. The residuals for the majority of covariates are tightly centered

around zero and show no discernible trends over time, which suggests that the effect of

these covariates on the hazard function remains constant throughout the study period.

This visual assessment is further supported by the results of the formal Grambsch-

Therneau test, which yielded non-significant p-values (p > 0.05) for all individual

covariates and interaction terms, with the exception of a single borderline interaction

effect. Notably, the global test statistic produced a p-value of 0.930, strongly indicating

that the proportional hazards assumption holds for the model as a whole. Together,

the visual and statistical diagnostics confirm that the model adequately satisfies the

proportional hazards assumption, thereby supporting the reliability of the estimated

hazard ratios.
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Figure 3.6: Histogram of gene selection frequency across 2000 LASSO model seeds.
The red line denotes the inclusion threshold (475 seeds) used to define the consensus
model. Most genes were rarely selected, indicating instability in single-seed models.

The distribution of gene selection frequencies across 2000 random seeds (Fig-

ure 3.6) underscores the instability of the LASSO-Cox feature selection process in

high-dimensional settings. Most genes were selected in fewer than five runs, high-

lighting a high sensitivity to random seed initialization and a risk of overfitting when

relying on single-run models. This sparsity suggests that many apparent associations

may be artifacts of sampling noise rather than robust signal. In contrast, a small

subset of genes demonstrated consistent selection across multiple seeds, with a sharp

drop-off in frequency thereafter. The red vertical line marks the consensus threshold of

475 seeds, chosen to balance signal retention and model robustness. Genes exceeding

this threshold were considered stable and reproducible, and only these were carried

forward into the final multivariable Cox PH model. This stability selection strategy
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serves as a safeguard against overfitting, enhancing both the interpretability and

generalizability of the model’s conclusions.

Gene or Term Number of Seeds

ENSG00000212452.1 2000
ENSG00000265943.1 1977
ENSG00000165943.5 1925
ENSG00000041880.14 1422
ENSG00000100099.21 1386
ENSG00000136560.14 1340
ENSG00000160953.16 1280
ENSG00000142686.8 1270
ENSG00000128463.13 1140
ENSG00000276805.2 743
ENSG00000108582.12 546
ENSG00000136694.9 546
ENSG00000177030.17 546
ENSG00000260913.1 546
ENSG00000144711.16 477
ENSG00000088256.9 308
ENSG00000124568.12 259

Table 3.6: Top covariates and genes included across seeds in the 2000-seed consensus
LASSO-Cox model. Variables appearing in more seeds are considered more stable
and robust predictors. Only gene-treatment interaction terms for the treated group
(:clin$treatmentsTRUE) are retained, as these reflect differential expression effects
under treatment.

Gene n_seeds Mean Coef SD Coef n_positive n_negative Sign Consistent

treatmentsTRUE:ENSG00000271653.1 1889 0.263 0.0316 1889 0 TRUE
treatmentsTRUE:ENSG00000235237.1 1270 -0.140 0.0163 0 1270 TRUE
treatmentsTRUE:ENSG00000253474.2 532 -0.153 0.0340 0 532 TRUE
treatmentsTRUE:ENSG00000136560.14 378 -0.380 0 0 378 TRUE
treatmentsTRUE:ENSG00000144711.16 251 0.316 0 251 0 TRUE
treatmentsTRUE:ENSG00000188707.6 99 -0.214 0 0 99 TRUE

Table 3.7: Top treatment interaction terms with consistent directionality across seeds.
The clin$ prefix has been removed for clarity. Only treatment interaction terms for
treated patients (:treatmentsTRUE) are shown.

The top-ranked covariates and gene-by-treatment interaction terms selected

across 2000 LASSO-Cox model fits are shown in Table 4.1. Several gene-

treatment interactions appeared in more than 25% of model iterations, including
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treatmentsTRUE:ENSG00000271653.1, treatmentsTRUE:ENSG00000235237.1, and

treatmentsTRUE:ENSG00000253474.2, suggesting consistent signal across resampled

fits. Table 3.7 summarizes these interaction terms, reporting their mean and standard

deviation of estimated coefficients, number of appearances across seeds, and direc-

tionality consistency. All listed terms were selected in at least 99 seeds and exhibited

complete sign consistency, indicating stable effect direction.

The magnitude and polarity of coefficients offer insight into how gene expression

modifies treatment response. For instance, ENSG00000271653.1 had a strongly nega-

tive coefficient when treatment was absent (mean = −0.382) and a positive coefficient

when treatment was administered (mean = 0.263), suggesting a potential treatment-

modifying effect: patients with higher expression of this gene may benefit more from

therapy. Similar patterns—though gene-specific in direction and magnitude—were

observed across other highly recurrent interaction terms. These consistent shifts based

on treatment status support the hypothesis that gene expression may influence survival

in a treatment-dependent manner.

These findings underscore the value of interaction modeling in identifying

context-specific biomarkers. By focusing on features with high recurrence and stable

sign across a large number of seeds, the final model prioritizes predictors that are not

only statistically reliable but also biologically interpretable. For clarity, the clin$

prefix has been omitted, and only the :TRUE interaction terms are shown, reflecting

effects specific to treated patients.
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3.5 Survival Between High and Low Gene Expression Groups

Figure 3.7: Kaplan–Meier survival curve for TPM3 (ENSG00000041880.14), stratified
by median expression.
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Figure 3.8: Kaplan–Meier survival curve for ENSG00000100099.21, stratified by
median expression.
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Figure 3.9: Kaplan–Meier survival curve for ENSG00000108582.12, stratified by
median expression.
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Figure 3.10: Kaplan–Meier survival curve for EIF4EBP1 (ENSG00000124568.12),
stratified by median expression.
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Figure 3.11: Kaplan–Meier survival curve for ENSG00000142686.8, stratified by
median expression.
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Figure 3.12: Kaplan–Meier survival curve for SLC7A5 (ENSG00000160953.16), strati-
fied by median expression.
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Figure 3.13: Kaplan–Meier survival curve for SLC35F2 (ENSG00000165943.5), strati-
fied by median expression.
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Figure 3.14: Kaplan–Meier survival curve for FAM110B (ENSG00000177030.17),
stratified by median expression.
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Figure 3.15: Kaplan–Meier survival curve for LINC01235 (ENSG00000212452.1),
stratified by median expression.
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Figure 3.16: Kaplan–Meier survival curve for ENSG00000235237.1, stratified by
median expression.
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Figure 3.17: Kaplan–Meier survival curve for AC104389.6 (ENSG00000265943.1),
stratified by median expression.
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Figure 3.18: Kaplan–Meier survival curve for AL139020.1 (ENSG00000271653.1),
stratified by median expression.

While several Kaplan–Meier survival curves exhibited visually distinct separation

between high and low gene expression groups, not all yielded statistically signif-

icant results via the log-rank test. For each gene, patients were stratified into

high and low expression groups based on the median expression value. Genes such

as ENSG00000041880.14, ENSG00000177030.17, and ENSG00000212452.1 showed

statistically significant unadjusted differences in survival (Figures 3.7, 3.14, 3.15).

In contrast, other genes including EIF4EBP1 (ENSG00000124568.12 ), SLC7A5

(ENSG00000160953.16 ), and AC104389.6 (ENSG00000265943.1 ) exhibited minimal

or no group separation (Figures 3.10, 3.12, 3.17), yet were retained in the final mul-

tivariable Cox proportional hazards model due to statistically significant adjusted

associations with survival. Additional genes such as CENPF (ENSG00000142686.8 ),

SLC35F2 (ENSG00000165943.5 ), and ENSG00000235237.1 were also plotted due to ei-

ther recurrence in model selection or notable visual separation (Figures 3.11, 3.13, 3.16).
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This apparent discrepancy arises because the log-rank test is a univariate

method that does not account for clinical covariates or gene-by-treatment interaction

effects. As a result, a gene may appear non-significant in unadjusted group comparisons

but still contribute meaningfully to prognosis once confounding factors are considered.

For instance, AL139020.1 (ENSG00000271653.1 ) displayed no significant difference

by log-rank test alone, but emerged as one of the most stable and strongly predictive

terms in the Cox model, particularly through its interaction with treatment status

(Figure 3.18, Table 3.7). Such cases highlight the importance of modeling gene

expression in its clinical context and support the use of multivariable methods to

uncover adjusted prognostic signals that may be obscured in univariate analyses.
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

4.1 Summary of Findings

This thesis explored prognostic modeling in breast cancer patients using the Cox PH

model, incorporating clinical and genomic variables. The study population consisted

of 1,047 patients drawn from TCGA-BRCA data. Summary statistics indicated that

untreated patients were, on average, older than treated patients, and race/ethnicity

distribution was broadly similar across groups.

Table 4.1: Final Cox PH Model: Significant Terms with Hazard Ratios and Confidence
Intervals

Covariate Sig. HR CI Lower CI Upper

age *** 1.0428 1.0234 1.0626

not_reported_ethnicity ** 0.1926 0.0561 0.6607

ENSG00000041880.14 ** 0.6005 0.4410 0.8177

ENSG00000088256.9 * 1.6394 1.0270 2.6170

ENSG00000108582.12 ** 0.6312 0.4794 0.8309

ENSG00000124568.12 * 0.6200 0.4184 0.9185

ENSG00000142686.8 ** 0.4545 0.2821 0.7322

ENSG00000165943.5 ** 0.6052 0.4167 0.8791

ENSG00000177030.17 * 0.6711 0.4536 0.9928

ENSG00000197081.16 *** 2.0599 1.3757 3.0845

ENSG00000212452.1 ** 0.6810 0.5364 0.8646

ENSG00000253474.2 * 0.4205 0.2129 0.8304

Continued on next page
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Table 4.1 – continued from previous page

Covariate Sig. HR CI Lower CI Upper

ENSG00000260048.2 ** 0.6866 0.5331 0.8842

ENSG00000265943.1 *** 0.5982 0.4651 0.7694

Treatment ×

ENSG00000136560.14

* 0.3605 0.1358 0.9571

Treatment ×

ENSG00000253474.2

* 2.2547 1.1018 4.6143

Treatment ×

ENSG00000271653.1

* 2.0831 1.0260 4.2294

Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

Interpretation of Significant Genes

The final multivariable Cox proportional hazards model, incorporating 2000-seed–

based LASSO selection with treatment interactions, identified a set of genes whose

expression significantly predicted survival, even after adjustment for clinical covariates

including age, race/ethnicity, AJCC stage, and treatment status. Below, we interpret

the significant gene-level terms with known or emerging biological relevance.

PARP3 (ENSG00000041880.14)

PARP3 (poly[ADP-ribose] polymerase family member 3) is an ADP-ribosyltransferase

involved in detecting and repairing DNA strand breaks, particularly through non-

homologous end joining (NHEJ) (Boehler and Dantzer, 2011). Overexpression of

PARP3 has been associated with chromosomal instability and tumor progression in

some cancers (Beck and Boehler, 2014), whereas loss of function can impair DNA
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repair capacity. In our model, its inverse association with hazard may suggest that

efficient DNA repair is protective in this breast cancer cohort. Evidence strength:

strong, with multiple studies linking PARP3 dysregulation to breast cancer biology.

MOAP1 (ENSG00000165943.5)

MOAP1 (modulator of apoptosis 1) is a pro-apoptotic protein that interacts with

BAX to promote mitochondrial-mediated cell death (Tan, 2011). It is regulated by

tumor suppressors such as RASSF1A and plays a role in death receptor–mediated

apoptosis. A protective association with survival in our model may reflect MOAP1’s

role in promoting tumor cell apoptosis. Evidence strength: moderate, with some

mechanistic links to apoptosis in breast cancer but limited large-cohort validation.

DEAF1 (ENSG00000177030.17)

DEAF1 (DEAF1 transcription factor) is a DNA-binding protein that regulates

transcription of genes involved in immune signaling and development (Hahm, 2013). It

has been linked to autoimmune disease susceptibility and may influence tumor–immune

interactions (Brennan, 2015). Its significance in our model may indicate a role in

modulating breast tumor immune microenvironments. Evidence strength: emerging,

with suggestive but not yet extensive literature support for direct roles in breast cancer.

HLA-DPB1 (ENSG00000212452.1)

Several class II HLA genes were significantly associated with survival. These genes

are critical for antigen presentation to CD4+ T cells and reflect an activated adaptive

immune response. Prior studies link HLA class II expression to improved outcomes

in breast and other solid tumors (Callahan, 2008; Forero, 2016). Evidence strength:

strong, with multiple independent studies confirming prognostic value in breast cancer.
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RP11-739L10.1 / LINC02576 (ENSG00000265943.1)

RP11-739L10.1 is annotated as a long non-coding RNA (LINC02576 in some sources)

with limited functional characterization. LncRNAs in breast cancer have been impli-

cated in immune modulation, epithelial–mesenchymal transition, and transcriptional

regulation (Sun, 2018). Its consistent selection across seeds and significant protective

effect suggest a possible role in such pathways. Evidence strength: weak-to-emerging,

with no direct studies on LINC02576 in breast cancer but plausible functional analogies

from other lncRNAs.

SNORD69 (ENSG00000212452.1)

SNORD69 is a small nucleolar RNA predicted to guide 2’-O-methylation of ribosomal

RNA (Dieci et al., 2009). While snoRNAs are traditionally viewed as housekeeping

molecules, emerging evidence suggests they may influence cancer cell metabolism and

proliferation (Williams and Farzaneh, 2012). Its inverse association with hazard could

indicate a link between ribosome biogenesis regulation and tumor growth suppression.

Evidence strength: weak-to-emerging, with indirect snoRNA-cancer literature but no

direct studies on SNORD69 in breast cancer.

IGF2R (ENSG00000197081.16)

IGF2R (insulin-like growth factor 2 receptor) regulates growth factor availability

and is involved in lysosomal enzyme trafficking (Oka, 2016). It can act as a tumor

suppressor by sequestering IGF2, preventing activation of the IGF1 receptor pathway

(de Souza, 2014). In our model, its association with improved survival is consistent

with tumor-suppressive activity. Evidence strength: strong, with repeated functional

and prognostic studies in breast cancer.
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C1orf216 (ENSG00000142686.8)

C1orf216 is an uncharacterized protein-coding gene located on chromosome 1. While

little is known about its molecular function, transcriptomic studies have found altered

expression in certain cancers (Uhlén, 2017). Its protective association in our model

suggests it could be a candidate for further functional characterization. Evidence

strength: very weak, with only broad cancer transcriptomic associations reported.

Novel Transcript (ENSG00000253474.2)

This feature is annotated as a “novel transcript” with no current functional annotation

in Ensembl. Its repeated selection across seeds and significant association with survival

suggest it may represent an uncharacterized regulatory RNA with prognostic potential.

Evidence strength: none-to-unknown, with no published studies available.

IGHV1OR16-3 (ENSG00000260048.2)

IGHV1OR16-3 is an immunoglobulin heavy variable region gene segment. Variation

in IGHV usage can influence antibody specificity and immune responses (Watson

and Breden, 2017). Its significance in our model may point to immune repertoire

differences that affect breast cancer outcomes. Evidence strength: emerging, with

indirect links from immune repertoire studies but no direct clinical validation in breast

cancer.

The set of significant genes identified in our final model includes both established mark-

ers of breast cancer biology and novel candidates. The strong-evidence genes (PARP3,

HLA class II genes, IGF2R) provide internal validation of our high-dimensional mod-

eling approach by recapitulating known tumor suppressor, DNA repair, and immune

presentation pathways. Moderate-evidence genes (MOAP1, DEAF1) extend the

analysis to apoptosis and transcriptional regulation mechanisms that are biologically

plausible in breast cancer but less frequently reported in the literature. Emerging
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candidates (LINC02576, SNORD69) align with recent studies highlighting the role of

non-coding RNAs in immune modulation and tumor progression. Finally, novel or

poorly characterized features (C1orf216, IGHV1OR16-3, ENSG00000253474.2) repre-

sent potentially unexplored biomarkers, warranting future functional validation. This

spectrum of evidence suggests that our integrative Cox-LASSO modeling approach not

only captures established biology but also highlights underexplored genomic elements

with prognostic potential.

4.2 Limitations

Several limitations must be acknowledged. First, the binary treatment variable

collapsed heterogeneous treatment modalities, potentially obscuring therapy-specific

effects. Second, the sample size for untreated patients was relatively small (n =

185), limiting statistical power for interaction testing. Third, gene expression was

assessed only at the mRNA level; integrating other -omics layers (e.g., proteomics

or methylomics) may provide more robust insights into molecular mechanisms and

enhance biomarker discovery. Finally, while an earlier stage of the modeling pipeline

included AJCC numeric stage encoding, the final multivariable Cox proportional

hazards model used the correct factor-based staging variable. Staging may still

incompletely capture disease severity and heterogeneity, and residual confounding

cannot be ruled out.

4.3 Future Directions

Future work may incorporate time-varying covariates and explore alternative survival

modeling frameworks—such as Aalen’s additive model (Aalen, 1989) or random survival

forests (Ishwaran et al., 2008)—to better accommodate complex, non-proportional

hazards and non-linear effects. Expanding this approach to additional TCGA datasets
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or adopting a pan-cancer perspective could improve generalizability across tumor

types and molecular subtypes. Experimental follow-up in cell lines or patient-derived

xenografts could help validate the biological significance and clarify the mechanistic

roles of the genes identified here.

A particularly promising avenue involves deeper investigation into the “genes

that matter.” The recurrence of a subset of genes selected across 2000 distinct seeds

underscores robustness in signal detection and identifies a tractable candidate set

for further biological validation. These stable predictors, repeatedly selected despite

stochastic initialization, likely reflect true associations with survival. Understand-

ing why these genes consistently emerge—across resampling strategies, modeling

approaches, and penalization regimes—could advance the development of reproducible

biomarkers and offer mechanistic insight into breast cancer prognosis.

4.3.1 Elastic Net and Other Extensions

While this study employed LASSO regularization for feature selection, future work

could benefit from the Elastic Net, which combines both ℓ1 and ℓ2 penalties:

β̂EN = argmin
β

{

n
∑

i=1

(

yi − xT
i β

)2
+ λ1

p
∑

j=1

|βj|+ λ2

p
∑

j=1

β2
j

}

This approach retains the sparsity of LASSO while mitigating its limitations in

correlated predictor spaces Zou and Hastie (2005). Comparisons across penalized

frameworks—using repeated cross-validation or bootstrap resampling—may further

improve model stability and predictive accuracy in high-dimensional settings.

4.3.2 Biological Implications and Gene Prioritization

The final multivariable Cox model retained both well-studied and lesser-known genes.

For instance, ANKRD30A (ENSG00000160953.16), also known as NY-BR-1, has been
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previously linked to breast tissue-specific expression and tumor immunogenicity Jäger

et al. (2001); Witt (2006). Similarly, NAPSA (ENSG00000212452.1) is associated with

luminal breast cancer subtypes and may serve as a differentiation marker Angelova

(2020). Other genes, such as WASHC1 (ENSG00000124568.12), lack extensive charac-

terization in breast cancer literature but were repeatedly selected across deterministic

seeds, suggesting potentially novel roles in tumor biology. These findings highlight

the capacity of systematic survival modeling to nominate new targets for biological

exploration.

4.4 Conclusions

By combining robust filtering, deterministic LASSO feature selection, and multivariable

Cox regression, this study identified multiple genes significantly associated with survival

in female breast cancer patients from TCGA-BRCA. The inclusion of both known

and understudied genes underscores the potential of high-dimensional modeling to

uncover novel prognostic factors. Moreover, incorporating treatment interactions

added interpretability, despite limitations in sample size and therapy granularity.

These results not only reinforce known biology but also motivate future integrative

studies across modalities and disease contexts. The stability of key findings across

seeds suggests reproducibility, a crucial asset in translational genomic research.
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APPENDIX: SUPPLEMENTARY R CODE

# ======================================

# Script: survival_filter.R

# ======================================

library(SummarizedExperiment)

library(survival)

# Load and organize data

load("../../GDCdata/TCGA-BRCA/TCGA_data.rda")

colnames(colData(dat))

meta <- colData(dat)[, c(

"project_id", "submitter_id", "age_at_diagnosis", "race",

"ethnicity", "gender", "days_to_death", "days_to_last_follow_up",

"vital_status", "paper_BRCA_Subtype_PAM50", "treatments"

)]

meta$treatments <- unlist(lapply(meta$treatments, function(xx) {

any(xx$treatment_or_therapy == "yes")

}))

meta

## Organize clinical and demographic data

# To perform survival analysis integrating both clinical/

# demographic variables and omics data, the following

# code extracts female breast cancer patients along with

# their survival outcomes, clinical/demographic variables,

# and RNA-seq features.

meta$time <- apply(meta[, c(

"days_to_death",

"days_to_last_follow_up"

)], 1, max, na.rm = TRUE) / 365.25

meta$status <- meta$vital_status

meta$age <- meta$age_at_diagnosis / 365.25

# Keep only female patients w/ information on age, race & ethnicity

subset(meta, race == "american indian or alaska native")

clin <- subset(meta, gender == "female" & !duplicated(submitter_id) & time

> 0 &

!is.na(age) & !is.na(race) & !is.na(ethnicity))

clin <- clin[order(clin$submitter_id), ]
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dim(clin)

## Create new race/ethnicity variable & set reference level to white

clin$race_ethnicity <- ifelse(clin$ethnicity ==

"hispanic or latino", clin$ethnicity, clin$race)

clin$race_ethnicity[clin$race_ethnicity ==

"american indian or alaska native"] <- "not reported"

clin$race_ethnicity <- relevel(factor(clin$race_ethnicity), ref = "white")

table(clin$race_ethnicity)

## Set numeric response for status (i.e., event/death = 1)

clin$status[clin$status == "Dead"] <- 1

clin$status[clin$status == "Alive"] <- 0

clin$status <- as.numeric(clin$status)

##### Normalize RNA-seq data with median of ratios methods from DESeq2

RNA_raw <- assays(dat)$unstranded

RNA_raw <- RNA_raw[, rownames(clin)]

dim(RNA_raw) ## Should be 60660 x 1047

dds <- DESeq2::DESeqDataSetFromMatrix(RNA_raw, colData = clin, design = ~1)

dds <- DESeq2::estimateSizeFactors(dds)

norm_counts <- DESeq2::counts(dds, normalized = TRUE)

dim(norm_counts) # Should be 60660 x 1047

##### Filter out low expression genes

keep_genes <- rowSums(norm_counts >= 10) >= 10 # ~10% of samples

filtered_norm <- norm_counts[keep_genes, ]

dim(filtered_norm) # should be 34599 x 1047

##### Transform count data to log2 data

log2_counts <- t(log2(filtered_norm + 1))

all(rownames(clin) == rownames(log2_counts)) # sanity check

## Save gene expression data

write.csv(log2_counts, "BRCA_normalized_RNA_counts.csv")

# Bootstrap patient-level samples

sample_idx <- sample(nrow(log2_counts), replace = TRUE)

# Resample both patient-level data and gene expression matrix

log2_counts <- log2_counts[sample_idx, ]

clin <- clin[sample_idx, ]

# Reassign rownames to keep alignment

rownames(clin) <- rownames(log2_counts)
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##### Feature preselection/filtering: P-value filter w/ cox model

gene_mat <- matrix(NA,

nrow = ncol(log2_counts),

ncol = 5

) # Results matrix for gene

# Results matrix for gene*treatment interaction:

int_mat <- matrix(NA, nrow = ncol(log2_counts), ncol = 5)

colnames(gene_mat) <- c("g_coef", "g_hazard_ratio", "g_se", "g_z",

"g_p_value")

colnames(int_mat) <- c("i_coef", "i_hazard_ratio", "i_se", "i_z",

"i_p_value")

rownames(gene_mat) <- rownames(int_mat) <- colnames(log2_counts)

for (j in 1:ncol(log2_counts)) {

fit_cox <- coxph(

Surv(clin$time, clin$status) ~ age + race_ethnicity +

treatments * log2_counts[, j],

data = clin,

control = coxph.control(iter.max = 50)

)

# Obtain tesults for gene

gene_mat[j, ] <- summary(fit_cox)$coefficients[6, ]

# Obtain results for gene*treatment interaction

int_mat[j, ] <- summary(fit_cox)$coefficients[7, ]

if (j %% 1000 == 0) {

print(j) # Running counter output

}

}

## Combine results from gene and gene*treatment interaction

## g prefix for gene

## i prefix for interaction

res_mat <- cbind(gene_mat, int_mat)

dim(res_mat)

## Save cox model results

write.csv(res_mat, file = paste0(

"cox_gene_screening_results_v", Sys.Date(), ".csv"

))

## Save all relevant objects

save(clin, log2_counts, res_mat, file = "cox_model_inputs.rda")

# ========================================

# Script: survival_modeling.R

# ========================================

# Script filters superset of genes by p_value, hazard ratio
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library(SummarizedExperiment)

library(DESeq2)

library(survival)

library(foreach)

library(doParallel)

library(dplyr)

library(tidyverse)

library(glmnet)

library(broom)

# Load SummarizedExperiment

load("../../GDCdata/TCGA-BRCA/TCGA_data.rda") # loads ’dat’

meta <- as.data.frame(colData(dat)[, c(

"project_id",

"submitter_id",

"age_at_diagnosis",

"ethnicity",

"gender",

"days_to_death",

"days_to_last_follow_up",

"vital_status",

"paper_BRCA_Subtype_PAM50",

"treatments",

"vital_status",

"ajcc_pathologic_stage"

)])

expr <- assay(dat)

# # Load data that has been filtered by p-values

filtered_data <- read.csv("cox_gene_screening_results_v2025-07-11.csv")

# Load previously saved Cox model inputs

load("cox_model_inputs.rda")

# loads: clin - patient data, log2counts -

# RNA-seq data, res_mat - results from cox model

colnames(clin)

# subset data based on typical p-values

clin_df <- as.data.frame(clin)

meta_df <- as.data.frame(meta)

meta_sub <- meta_df %>%

select(submitter_id, ajcc_pathologic_stage)

clin_df <- clin_df %>%

left_join(meta_sub, by = "submitter_id")
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# Convert back to Bioconductor DataFrame if needed

clin <- S4Vectors::DataFrame(clin_df)

# # Create numeric stage score (1, 2, ..., 11)

# clin$ajcc_stage_numeric <- as.numeric(clin$ajcc_pathologic_stage)

stage_mapping <- c(

"Stage I" = "1",

"Stage IA" = "1.33",

"Stage IB" = "1.66",

"Stage II" = "2",

"Stage IIA" = "2.33",

"Stage IIB" = "2.66",

"Stage III" = "3",

"Stage IIIA" = "3.25",

"Stage IIIB" = "3.5",

"Stage IIIC" = "3.75",

"Stage IV" = "4"

# Optionally:

# "Stage X" = NA # or assign a value if meaningful

)

# Ensure character type

clin$ajcc_pathologic_stage <- as.character(clin$ajcc_pathologic_stage)

# Map to numeric

clin$ajcc_stage_numeric <-

as.numeric(stage_mapping[clin$ajcc_pathologic_stage])

# Overwrite prior clin file with AJCC

write.csv(clin, "BRCA_patient_data.csv")

# Check for unmapped stages

unmapped <-

unique(clin$ajcc_pathologic_stage[is.na(clin$ajcc_stage_numeric)])

if (length(unmapped) > 0) {

warning("Unmapped stages detected: ", paste(unmapped, collapse = ", "))

# Optionally drop rows:

# clin <- clin[!is.na(clin$ajcc_stage_numeric), ]

}

# Keep genes that have p < 0.05 for either gene or

# gene*treatment interaction in cox model

colnames(res_mat) # columns 5 & 10 have p-value

lasso_genes <- apply(res_mat, 1, function(x) any(x[c(5, 10)] < 0.05))

filtered_data <- data.frame(res_mat[lasso_genes, ])
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cat(dim(filtered_data)[[1]], "genes remain.\n")

# Subset SummarizedExperiment based on genes of interest

# Here considered bounds for both gene & gene*treatment

g_bounds <- quantile(filtered_data$g_hazard_ratio, probs = c(0.015, 0.985))

g_min_bound <- min(g_bounds)

g_max_bound <- max(g_bounds)

i_bounds <- quantile(filtered_data$i_hazard_ratio, probs = c(0.015, 0.985))

i_min_bound <- min(i_bounds)

i_max_bound <- max(i_bounds)

ultra_filtered_data <- subset(

filtered_data,

(filtered_data$g_hazard_ratio < g_min_bound |

filtered_data$g_hazard_ratio > g_max_bound |

filtered_data$i_hazard_ratio < i_min_bound |

filtered_data$i_hazard_ratio > i_max_bound)

)

cat(dim(ultra_filtered_data)[[1]], "genes remain.\n")

gene_list <- rownames(ultra_filtered_data)

gene_ids_in_dat <- colnames(log2_counts)

matching_ids <- gene_ids_in_dat %in% gene_list

dat_subset <- log2_counts[, matching_ids]

dim(dat_subset)

## For LASSO (glmnet, survival family):

## x: np numeric matrix of covariate values

## (rows = patients, cols = covariates)

## y: n2 matrix from Surv(time, event) in the survival package

## recommended to pass Surv() output directly to glmnet

#

# Create np model matrix of covariates & interaction terms

# Ensure row alignment between clin and dat_subset

# Step 1: Truncate dat_subset rownames to match clin’s submitter_id format

short_barcodes <- substr(rownames(dat_subset), 1, 12)

# Step 2: Assign these as rownames of dat_subset

# (safe because it’s just relabeling)

rownames(dat_subset) <- short_barcodes

# Step 3: Subset clin to match the barcodes in dat_subset

clin <- clin[clin$submitter_id %in% short_barcodes, ]
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# Step 4: Reorder clin to match dat_subset rownames exactly

clin <- clin[match(rownames(dat_subset), clin$submitter_id), ]

# Step 5: Ensure rownames of clin match rownames of dat_subset

rownames(clin) <- rownames(dat_subset)

# Sanity check

stopifnot(identical(rownames(clin), rownames(dat_subset)))

clin <- clin[rownames(clin) %in% rownames(dat_subset), ]

X <- model.matrix(~ clin$age + clin$race_ethnicity + clin$treatments *

dat_subset)

X_clean <- X[, -1] #-1 here removes intercept to obtain nxp matrix

y <- Surv(clin$time, clin$status)

dim(X_clean)

write.csv(clin, "clinical_data.csv")

# Identify the number of covariates that are NOT related to genes

n.cov <- ncol(X_clean) - length(grep("dat_subset", colnames(X_clean)))

colnames(X_clean)[1:n.cov]

saveRDS(X_clean, file = "model_matrix_X_clean.rds")

saveRDS(y, file = "survival_response_y.rds")

saveRDS(n.cov, file = "n_covariates_unpenalized.rds")

## Fit LASSO Cox model

# Get deterministic seeds

set.seed(123) # Fixed seed to make this deterministic

seeds <- tail(sample(1:1e6, size = 10^4, replace = FALSE), 9970)

counter <- 1

for (seed in seeds) {

# Create and register a parallel backend with 16 workers

cl <- makeCluster(96)

registerDoParallel(cl)

tryCatch(

{

set.seed(seed)

cvfit <- cv.glmnet(X_clean, y,

family = "cox", alpha = 1,

parallel = TRUE,

maxit = 1e7,

penalty.factor = c(

rep(0, n.cov),
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rep(1, ncol(X_clean) - n.cov)

), # no penalty of patient co-variates

nfolds = 10,

nlambda = 100,

standardize = TRUE,

type.measure = "C"

)

print(cvfit)

coef(cvfit, s = "lambda.min") %>%

as.matrix() %>%

{

.[. != 0, , drop = FALSE]

}

# Plot the regularization path

png("cvfit_plot.png", width = 800, height = 600)

plot(cvfit)

dev.off()

# Identify the genes selected by lasso

non_zero_covariates <- rownames(coef(cvfit,

s = "lambda.min"

))[coef(cvfit, s = "lambda.min")[, 1] != 0]

non_zero_genes <-

non_zero_covariates[grep("dat_subset", non_zero_covariates)]

selected_gene_names0 <-

gsub("dat_subset", "", non_zero_genes)

selected_gene_names <- gsub(

"clin\\$treatmentsTRUE\\:",

"", selected_gene_names0

)

interaction_gene_names <- selected_gene_names[

grep("clin\\$treatmentsTRUE\\:", selected_gene_names0)

]

selected_genes <- unique(selected_gene_names)

length(selected_genes)

if (length(selected_genes) == 0) {

stop("No genes were selected by LASSO. Cannot fit final Cox model.")

}

## Final cox model

## Standardize genes for final model

log2_count_scaled <- scale(log2_counts)

final_genes <- data.frame(log2_count_scaled[

,
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colnames(log2_count_scaled) %in% selected_genes

])

dim(final_genes)

# Now with cancer staging (additive)

# Merge clinical and gene data

model_data <- cbind(

clin[, c(

"time", "status", "age", "race_ethnicity",

"ajcc_stage_numeric",

"ajcc_pathologic_stage",

"treatments"

)],

final_genes

)

model_data$ajcc_pathologic_stage <-

as.factor(model_data$ajcc_pathologic_stage)

# Save the model data from the current seed

saveRDS(model_data,

file =

paste0("saved-models/model_data_seed_", seed, ".rds")

)

# Construct the formula using column names from model_data only

final_fit_2 <- coxph(

Surv(time, status) ~ age + race_ethnicity +

ajcc_pathologic_stage + strata(treatments) + (.),

data = model_data,

control = coxph.control(eps = 1e-6, iter.max = 5000),

method = "breslow",

singular.ok = TRUE

)

print(summary(final_fit_2))

# Extract summary table from the Cox model

sum_fit <- summary(final_fit_2)

# Get the coefficient table

coef_table <- sum_fit$coefficients # this is a matrix

# Filter: Keep only rows with ENSEMBL IDs and p < 0.05

signif_genes <- rownames(coef_table)[

grepl("^ENSG", rownames(coef_table)) & coef_table[, "Pr(>|z|)"] <

0.05
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]

# View the gene list

print(signif_genes)

# Now with cancer staging, (multiplicative)

# 1. Fit the Cox model

# 1. Fit the Cox model with interactions (multiplicative)

final_fit_2_interactions <- coxph(

Surv(time, status) ~ age + race_ethnicity +

ajcc_stage_numeric + treatments * (.),

data = model_data,

control = coxph.control(eps = 1e-6, iter.max = 5000),

method = "breslow",

singular.ok = TRUE

)

# 2. Extract coefficients

coef_table <- summary(final_fit_2_interactions)$coefficients

# 3. Identify interaction terms

is_interaction <- is_interaction <-

grepl("^treatmentsTRUE:ENSG", rownames(coef_table))

# 4. Clean and format

interaction_df <- data.frame(

term = rownames(coef_table)[is_interaction],

coef = coef_table[is_interaction, "coef"],

pval = coef_table[is_interaction, "Pr(>|z|)"],

hr = coef_table[is_interaction, "exp(coef)"],

stringsAsFactors = FALSE

)

# 5. Filter and format for clean scientific notation

interaction_df_filtered <- interaction_df %>%

filter(abs(coef) < 5, pval < 0.05) %>%

arrange(pval) %>%

mutate(

coef = formatC(coef, digits = 3, format = "f"),

hr = formatC(hr, digits = 3, format = "f"),

pval_fmt = ifelse(

pval < 2e-16,

"< 2e-16",

formatC(pval, format = "e", digits = 2)

)

) %>%

select(term, coef, hr, pval_fmt)
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# 6. Pretty print

cat("\nTop treatment gene interactions (scientific notation):\n\n")

print(interaction_df_filtered, right = FALSE, row.names = FALSE)

# Step 1: Extract ENSG IDs from row names of interaction_df_filtered

interaction_ids <- gsub(

".*:ENSG",

"ENSG", rownames(interaction_df_filtered)

)

# Step 2: Construct interaction terms

interaction_terms <- paste0("clin$treatments:", interaction_ids)

# Step 3: (optional) Make sure signif_genes are

# character vector of gene IDs (if not already)

# signif_genes <- colnames(final_genes)[some_selection_logic]

# Step 4: Construct the model formula string

base_terms <- c(

"clin$age",

"clin$race_ethnicity",

"strata(clin$treatments)",

"strata(clin$ajcc_stage_numeric)"

)

formula_string <- paste(

"Surv(clin$time, clin$status) ~",

paste(c(base_terms, signif_genes, interaction_terms), collapse = " +

")

)

# Step 5: Convert to formula

cox_formula <- as.formula(formula_string)

# Step 6: Fit final model

final_fit <- coxph(

formula = cox_formula,

data = final_genes,

control = coxph.control(iter.max = 300)

)

# Visually inspect results

summary(final_fit)

if (!is.null(final_fit) && inherits(final_fit, "coxph")) {

save_path <- paste0("saved-models/final_fit_seed_", seed, ".rds")
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saveRDS(final_fit, file = save_path)

cat("Saved model:", save_path, "\n")

} else {

cat("Model fit failed (not class ’coxph’) for seed:", seed, "\n")

}

},

error = function(e) {

cat("Error at seed", seed, ":", conditionMessage(e), "\n")

}

)

print(paste0(counter, " seeds have been processed."))

counter <- counter + 1

stopCluster(cl)

gc()

}

}

# ======================================

# Script: visualizations.R

# ======================================

# Minimal plotting script: AJCC stage survival + distribution

library(survival)

library(survminer)

library(ggplot2)

library(dplyr)

# Load clinical data

clin <- readRDS("clin.RDS")

clin_df <- as.data.frame(as(clin, "DataFrame"))

# Ensure output folder exists

if (!dir.exists("images")) dir.create("images", recursive = TRUE)

# Collapse AJCC pathologic stages to I/II/III/IV

clin_df <- clin_df %>%

mutate(

ajcc_pathologic_stage = as.character(ajcc_pathologic_stage),

ajcc_stage_collapsed = case_when(

ajcc_pathologic_stage %in% c(

"Stage I",

"Stage IA", "Stage IB"

) ~ "Stage I",

ajcc_pathologic_stage %in% c(
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"Stage II",

"Stage IIA", "Stage IIB"

) ~ "Stage II",

ajcc_pathologic_stage %in% c(

"Stage III",

"Stage IIIA", "Stage IIIB", "Stage IIIC"

) ~ "Stage III",

ajcc_pathologic_stage == "Stage IV" ~ "Stage IV",

TRUE ~ NA_character_

),

ajcc_stage_collapsed = factor(ajcc_stage_collapsed,

levels =

c(

"Stage I",

"Stage II",

"Stage III",

"Stage IV"

)

)

)

# Filter to rows with complete survival + collapsed stage info

clin_surv <- clin_df %>%

filter(!is.na(time), !is.na(status), !is.na(ajcc_stage_collapsed))

# Plot 1: Survival by collapsed AJCC stage

fit_collapsed <- survfit(Surv(time, status) ~

ajcc_stage_collapsed, data = clin_surv)

surv_plot_collapsed <- ggsurvplot(

fit_collapsed,

data = clin_surv,

pval = TRUE,

risk.table = TRUE,

conf.int = FALSE,

legend.title = "AJCC Stage",

ggtheme = theme_minimal(),

title = "Survival by Collapsed AJCC Stage"

)

ggsave(

filename = "images/survival_by_collapsed_ajcc_stage.png",

plot = surv_plot_collapsed$plot,

width = 10, height = 8, dpi = 300

)

# Plot 2: AJCC stage distribution (original pathologic stage)
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# Set a sensible order for bars (optional)

stage_levels <- c(

"Stage I", "Stage IA", "Stage IB",

"Stage II", "Stage IIA", "Stage IIB",

"Stage III", "Stage IIIA", "Stage IIIB", "Stage IIIC",

"Stage IV", "Stage X"

)

clin_df$ajcc_pathologic_stage <-

factor(clin_df$ajcc_pathologic_stage, levels = stage_levels)

stage_dist_plot <- ggplot(clin_df, aes(x = ajcc_pathologic_stage)) +

geom_bar() +

labs(

title = "Distribution of AJCC Pathologic Stages",

x = "Stage",

y = "Number of Patients"

) +

theme_minimal() +

coord_flip()

ggsave(

filename = "images/ajcc_stage_distribution.png",

plot = stage_dist_plot,

width = 7, height = 5, dpi = 300

)

# ======================================

# Script: jacard.R

# ======================================

## compute overlap + Jaccard from hard-coded Ensembl IDs

# Define gene sets per model

seed_105541 <- c(

"ENSG00000041880.14","ENSG00000088256.9","ENSG00000108582.12",

"ENSG00000124568.12","ENSG00000142686.8","ENSG00000165943.5",

"ENSG00000177030.17","ENSG00000197081.16","ENSG00000212452.1",

"ENSG00000253474.2","ENSG00000260048.2","ENSG00000265943.1"

)

seed_27352 <- c(

"ENSG00000041880.14","ENSG00000108582.12","ENSG00000124568.12",

"ENSG00000142686.8","ENSG00000165943.5","ENSG00000177030.17",

"ENSG00000197081.16","ENSG00000212452.1","ENSG00000253474.2",

"ENSG00000260048.2"

)
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seed_40284 <- c(

"ENSG00000041880.14","ENSG00000108582.12","ENSG00000124568.12",

"ENSG00000142686.8","ENSG00000165943.5","ENSG00000177030.17",

"ENSG00000197081.16","ENSG00000212452.1","ENSG00000260048.2",

"ENSG00000265943.1"

)

final_model <- c(

"ENSG00000041880.14","ENSG00000108582.12","ENSG00000124568.12",

"ENSG00000142686.8","ENSG00000165943.5","ENSG00000177030.17",

"ENSG00000197081.16","ENSG00000212452.1","ENSG00000260048.2"

)

# Put them in a named list

sets <- list(

"Seed 105541" = seed_105541,

"Seed 27352" = seed_27352,

"Seed 40284" = seed_40284,

"Final Model" = final_model

)

# Presence/absence table with Census

all_genes <- sort(unique(unlist(sets)))

presence <- sapply(sets, function(s) as.integer(all_genes %in% s))

presence_df <- data.frame(Gene = all_genes, presence, check.names = FALSE)

presence_df$Census <- rowSums(presence_df[names(sets)])

cat("\n### Presence/Absence Table (with Census) ###\n")

print(presence_df, row.names = FALSE)

# Jaccard similarity matrix

jaccard <- function(a, b) {

inter <- length(intersect(a, b))

uni <- length(union(a, b))

if (uni == 0) return(NA_real_)

inter / uni

}

model_names <- names(sets)

J <- matrix(NA_real_, nrow = length(sets), ncol = length(sets),

dimnames = list(model_names, model_names))

for (i in seq_along(sets)) {

for (j in seq_along(sets)) {

J[i, j] <- jaccard(sets[[i]], sets[[j]])

}

}
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cat("\n### Jaccard Similarity Matrix ###\n")

print(round(J, 2))

# ======================================

# Script: signal_stability.R

# ======================================

library(tidyverse)

library(survival)

library(dplyr)

library(broom)

library(stringr)

library(survminer)

library(forcats) # used later for factor ordering

# Directory containing models

model_dir <- "./saved-models"

model_files <- list.files(model_dir,

pattern = "^final_fit_seed_\\d+\\.rds$", full.names = TRUE

)

# Consider only 2000

model_files <- head(model_files, 2000)

# Load clinical data

clin <- read.csv("clinical_data.csv")

# Extract both genes and treatment interactions

extract_model_terms <- function(file_path) {

seed <- as.integer(str_extract(file_path, "\\d+"))

model <- readRDS(file_path)

coef_df <- as.data.frame(summary(model)$coefficients)

coef_df$term <- rownames(coef_df)

terms_df <- coef_df %>%

filter(coef != 0) %>%

select(term, coef) %>%

rename(gene = term, coefficient = coef) %>%

mutate(seed = seed) %>%

select(seed, gene, coefficient)

return(terms_df)

}

# Combine all results

compiled_results <- map_dfr(model_files, extract_model_terms)
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# Save all compiled results

write_csv(compiled_results, "compiled_gene_and_interaction_results.csv")

# Frequency of appearance across seeds (all terms)

gene_frequency <- compiled_results %>%

count(gene, name = "n_seeds") %>%

arrange(desc(n_seeds))

write_csv(gene_frequency, "gene_frequency_summary.csv")

# Keep only genes that appear in >475 seeds

freq_cutoff <- 475

freq_genes <- gene_frequency %>%

dplyr::filter(n_seeds > freq_cutoff) %>%

dplyr::pull(gene) # ENSG IDs

# Identify and summarize treatment interaction terms

treatment_interactions <- compiled_results %>%

filter(str_detect(gene, "treatments.*:")) %>%

group_by(gene) %>%

summarise(

n_seeds = n(),

mean_coef = mean(coefficient),

sd_coef = sd(coefficient),

n_positive = sum(coefficient > 0),

n_negative = sum(coefficient < 0),

sign_consistent = (n_positive == 0 | n_negative == 0)

) %>%

arrange(desc(n_seeds))

write_csv(treatment_interactions, "treatment_interactions_summary.csv")

# Print key outputs

print("Gene frequency across seeds:")

print(gene_frequency %>% slice_head(n = 20))

print("Top treatment interaction terms:")

print(treatment_interactions %>% slice_head(n = 20))

### Fit final candidate model

gene_threshold <- 20

top_genes <- gene_frequency %>%

filter(n_seeds >= gene_threshold) %>%

pull(gene)
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interaction_threshold <- 20

top_interactions <- treatment_interactions %>%

filter(n_seeds >= interaction_threshold, sign_consistent) %>%

pull(gene)

# Load matrix and survival outcome

X_clean <- readRDS("model_matrix_X_clean.rds")

y <- readRDS("survival_response_y.rds")

# Combine and clean term names

top_genes_clean <- ifelse(

grepl("^ENSG", top_genes),

paste0("dat_subset", top_genes),

top_genes

)

top_interactions_clean <- gsub(

"^clin\\$treatments(TRUE|FALSE):(ENSG[0-9.]+)$",

"clin$treatments\\1:dat_subset\\2",

top_interactions

)

# Include interaction genes as a main effect

top_interaction_suffix <- strsplit(top_interactions_clean, ":")

second_term <- function(x) x[[2]]

top_interaction_suffixes <- lapply(top_interaction_suffix, second_term)

main_effect_genes <- do.call(rbind, unique(top_interaction_suffixes))

main_effect_genes <- as.character(main_effect_genes)

# Remove stratification variables from the modeling matrix

stable_terms <- setdiff(

unique(c(

top_genes_clean,

main_effect_genes,

top_interactions_clean,

"clin$treatmentsTRUE",

"ajcc_pathologic_stage"

)),

c("clin$treatmentsTRUE", "ajcc_pathologic_stage") # Remove stratified vars

)

# Make sure clin$ajcc_pathologic_stage is a factor

clin$ajcc_pathologic_stage <- as.factor(clin$ajcc_pathologic_stage)

# Build modeling data

X_clean <- as.data.frame(X_clean)

X_clean$ajcc_pathologic_stage <- clin$ajcc_pathologic_stage
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clin$treatmentsTRUE <- as.integer(clin$treatments == TRUE)

# Subset to final covariates

X_final <- X_clean[, colnames(X_clean) %in% stable_terms]

# Add back strata variables to the dataframe for modeling

X_final$ajcc_pathologic_stage <- clin$ajcc_pathologic_stage

X_final$treatmentsTRUE <- clin$treatmentsTRUE

X_final$treatmentsTRUE <- clin$treatmentsTRUE

X_final$ajcc_pathologic_stage <- clin$ajcc_pathologic_stage

# Fit stratified Cox model

final_fit <- coxph(y ~ . + strata(treatmentsTRUE, ajcc_pathologic_stage),

data = X_final)

summary(final_fit) # Table 4.1

# Check proportional hazards model

ph_test <- cox.zph(final_fit)

ph_test

# Extract Schoenfeld residuals for custom ggplot2 visualization

# ph_test$y is a matrix of residuals (variables = columns)

# ph_test$x is time, shared across all variables

resid_df <- do.call(rbind, lapply(1:ncol(ph_test$y), function(i) {

data.frame(

time = ph_test$x,

residual = ph_test$y[, i],

variable = colnames(ph_test$y)[i]

)

}))

# Define plotting function

plot_schoenfeld <- ggplot(resid_df, aes(x = time, y = residual)) +

geom_point(color = "black", alpha = 0.3, size = 0.5) +

geom_smooth(

method = "loess", formula = y ~ x, color = "blue", se = FALSE, size = 1

) +

labs(

title = "Global Schoenfeld Residuals Trend",

x = "Time",

y = "Scaled Schoenfeld Residual"

) +

theme_minimal(base_size = 14) +

theme(legend.position = "none")

ggsave("./final_figures/schoenfeld_residuals_final_model.png",
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plot = plot_schoenfeld, width = 10, height = 6, dpi = 300

)

# Save model and summary

saveRDS(final_fit, "final_model_stable_terms.rds")

writeLines(

capture.output(summary(final_fit)),

"final_model_stable_terms_summary.txt"

)

# Tidy coefficient results

coef_df <- tidy(final_fit, exponentiate = TRUE, conf.int = TRUE)

# Filter to clinical + frequent genes;

# drop stratified variables (no HRs by design)

coef_df <- coef_df %>%

dplyr::mutate(

ensg = dplyr::if_else(

stringr::str_detect(term, "ENSG"),

stringr::str_replace(term, ".*(ENSG[0-9\\.]+).*", "\\1"),

NA_character_

)

) %>%

# keep clinical terms (ensg NA) + genes whose ENSG appears >475 times

dplyr::filter(is.na(ensg) | ensg %in% freq_genes) %>%

# ensure strata variables never appear in the forest plot

dplyr::filter(!stringr::str_detect(term, "ajcc_pathologic_stage")) %>%

dplyr::filter(!stringr::str_detect(term, "treatmentsTRUE$")) %>%

dplyr::filter(!stringr::str_detect(term, "^strata\\("))

write_csv(coef_df, "final_model_coefficients.csv")

# Plot gene frequency

gene_freq <- ggplot(gene_frequency, aes(x = n_seeds)) +

geom_histogram(binwidth = 50, fill = "#FFE7A0", color = "goldenrod4") +

geom_vline(xintercept = 475, color = "red") +

theme_minimal() +

labs(

title = "Gene Frequency Across Seeds",

x = "Number of Seeds", y = "Gene Count"

)

# Save the gene frequency histogram

ggsave(

filename = "final_figures/gene_selection_frequency_hist.png",

plot = gene_freq,

width = 7,
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height = 7,

dpi = 300

)

# Clean labels for forest plot (stable-genes plot)

coef_df_clean <- coef_df %>%

mutate(term = str_replace_all(term, "X_finalclin\\$", "")) %>%

mutate(term = str_replace_all(term, "X_finaldat_subset", "")) %>%

mutate(term = str_replace_all(term, "TRUE:dat_subset", "")) %>%

mutate(term = str_replace_all(term, "dat_subset", "")) %>%

mutate(term = str_replace_all(term, "‘", "")) %>%

mutate(term = str_replace_all(term, "\\$", "")) %>%

mutate(term = str_replace_all(term, "race_ethnicity", "Race: ")) %>%

mutate(term = str_replace_all(term, "treatments", "Treatment")) %>%

mutate(term = str_trim(term)) %>%

mutate(

variable_type = case_when(

str_detect(term, "") ~ "Gene Treatment",

str_detect(term, "ENSG") ~ "Gene",

TRUE ~ "Clinical Covariate"

)

)

# Ensure grouping variable exists

coef_df_clean <- coef_df_clean %>%

mutate(variable_type = case_when(

str_detect(term, "") ~ "Gene Treatment",

str_detect(term, "ENSG") ~ "Gene",

TRUE ~ "Clinical Covariate"

))

# Order by block (Clinical Gene GeneTx), then by increasing HR within

each block

coef_df_clean <- coef_df_clean %>%

arrange(

factor(variable_type, levels = c("Clinical Covariate", "Gene", "Gene

Treatment")),

estimate, # increasing HR within each block

term

) %>%

mutate(term_ordered = factor(term, levels = rev(unique(term)))) %>% #

top-to-bottom

filter(term != "clinTreatmentTRUE")

# Forest plot (legend off, y label = Term)

forest_plot <- ggplot(coef_df_clean, aes(x = estimate, y = term_ordered)) +

geom_point(size = 2) +
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geom_errorbarh(aes(xmin = conf.low, xmax = conf.high), height = 0.2) +

geom_vline(xintercept = 1, linetype = "dashed", color = "gray70") +

theme_minimal(base_size = 14) +

labs(title = "Forest Plot of Final Cox Model",

x = "Hazard Ratio (HR)",

y = "Term") +

theme(axis.text.y = element_text(size = 12),

panel.grid.minor = element_blank(),

legend.position = "none")

# Save the forest plot to the desired file path

ggsave(

filename = "./final_figures/final_forest_plot_stable_genes.png",

plot = forest_plot,

width = 8,

height = 6,

dpi = 300

)

# NEW: Figure matching significant terms in table

# Build a second figure that includes ALL significant

# terms (clinical + gene + interactions)

# from the final model, regardless of HR direction. Legend removed.

coef_all <- broom::tidy(final_fit, exponentiate = TRUE, conf.int = TRUE)

sig_terms <- coef_all %>%

filter(

!str_detect(term, "^strata\\("),

!str_detect(term, "ajcc_pathologic_stage"),

!is.na(p.value), p.value < 0.05

) %>%

mutate(

variable_type = case_when(

str_detect(term, "treatmentsTRUE:") ~ "Gene Treatment",

str_detect(term, "ENSG") ~ "Gene",

TRUE ~ "Clinical Covariate"

),

# Clean labels for display

term_clean = term %>%

str_replace_all("X_finalclin\\$", "") %>%

str_replace_all("X_finaldat_subset", "") %>%

str_replace_all("‘", "") %>%

str_replace_all("\\$", "") %>%

str_replace("^age$", "clinAge") %>%

str_replace("^race_ethnicity", "clinRace: ") %>%
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str_replace_all("treatmentsTRUE:dat_subset", "clinTreatment ") %>%

str_replace_all("treatmentsTRUE:", "clinTreatment ") %>%

str_replace_all("dat_subset", "") %>%

str_replace("clinRace: not_reported", "clinRace: not reported")

) %>%

arrange(

factor(variable_type, levels = c("Clinical Covariate","Gene","Gene

Treatment")),

desc(abs(log(estimate)))

) %>%

mutate(

term_ordered = fct_rev(fct_inorder(term_clean))

)

sig_forest <- ggplot(sig_terms, aes(x = estimate, y = term_ordered, color =

variable_type)) +

geom_point(size = 2) +

geom_errorbarh(aes(xmin = conf.low, xmax = conf.high), height = 0.22) +

geom_vline(xintercept = 1, linetype = "dashed", color = "gray65") +

scale_color_manual(values = c(

"Clinical Covariate" = "gray40",

"Gene" = "#1f77b4",

"Gene Treatment" = "#ff7f0e"

)) +

labs(

title = "Final Cox PH Model: Significant Clinical, Gene, and Interaction

Terms",

x = "Hazard Ratio (HR)", y = "Term"

) +

theme_minimal(base_size = 14) +

theme(panel.grid.minor = element_blank(),

legend.position = "none") # remove legend

ggsave("final_figures/final_forest_plot_sig_all_terms.png",

plot = sig_forest, width = 8.5, height = 7.5, dpi = 300)

# Example: Plot survival curves for a top gene

ensemble_ids <- coef_df_clean$term[grepl("ENS", coef_df_clean$term)]

for (ensemble_id in ensemble_ids) {

gene_id <- ensemble_id

gene_col <- paste0("dat_subset", gene_id)

# Only continue if gene is present in X_clean

if (gene_col %in% colnames(X_clean)) {

# Create expression group (median split)

expression_group <- ifelse(X_clean[, gene_col] >
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median(X_clean[, gene_col], na.rm = TRUE),

"High", "Low"

)

# Create a dataframe combining survival info and expression group

survival_data <- data.frame(

time = y[, "time"],

event = y[, "status"],

expression_group = factor(expression_group, levels = c("Low", "High"))

)

# Create survival object

surv_obj <- Surv(survival_data$time, survival_data$event)

# Fit Kaplan-Meier model

km_fit <- survfit(surv_obj ~ expression_group, data = survival_data)

# Plot without confidence intervals

surv_plot <- ggsurvplot(

km_fit,

data = survival_data,

pval = TRUE,

conf.int = FALSE,

risk.table = TRUE,

legend.title = gene_id,

legend.labs = c("Low", "High"),

palette = c("#4DBBD5", "#E64B35"),

title = paste("Survival by", gene_id, "Expression"),

xlab = "Time",

ylab = "Survival Probability"

)

# Save the plot

ggsave(

filename = paste0("./final_figures/", ensemble_id, "_survival.png"),

plot = surv_plot$plot, # Ensures ggsurvplot output is rendered

width = 6,

height = 5,

dpi = 300

)

} else {

warning(paste("Gene", gene_id, "not found in X_clean"))

}

print(ensemble_id)

}

# ======================================
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# Script: unstable_seed.R

# ======================================

library(dplyr)

library(stringr)

library(ggplot2)

library(forcats)

library(broom)

# Load models

model_dir <- "./saved-models"

model_files <- list.files(model_dir, pattern = "\\.rds$", full.names = TRUE)

model_list <- lapply(model_files, readRDS)

names(model_list) <- tools::file_path_sans_ext(basename(model_files))

# Define the known wild seeds (based on earlier analysis)

wild_seeds <- c(

105541, 105812, 108186, 11665, 121673,

127352, 129597, 130030, 140284, 140712

)

# Extract seeds from filenames

model_seeds <- as.integer(gsub("final_fit_seed_", "", names(model_list)))

# Find indices in model_list that correspond to wild seeds

seed_indices <- which(model_seeds %in% wild_seeds)

for (seed in seed_indices) {

# Tidy first model

coef_df <- broom::tidy(model_list[[seed]], conf.int = TRUE)

# Clean term labels and add group column

coef_df_clean <- coef_df %>%

mutate(term_clean = term) %>%

mutate(

term_clean = str_replace_all(term_clean, "X_finalclin\\$", ""),

term_clean = str_replace_all(term_clean, "X_finaldat_subset",

""),

term_clean = str_replace_all(term_clean, "TRUE:dat_subset", ""),

term_clean = str_replace_all(term_clean, "\\$", ""),

term_clean = str_replace_all(term_clean, "race_ethnicity",

"Race: "),

term_clean = str_replace_all(term_clean, "treatments",

"Treatment"),

term_clean = str_replace_all(term_clean, "age", "Age")

) %>%

mutate(group = case_when(
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str_detect(term_clean, "ENSG") & str_detect(term_clean,

"Treatment") ~ "Gene Treatment",

str_detect(term_clean, "ENSG") ~ "Gene",

TRUE ~ "Clinical Covariate"

))

# Internal rank within group (for sorted ordering within grouped blocks)

coef_df_clean <- coef_df_clean %>%

group_by(group) %>%

mutate(order_within_group = rank(estimate)) %>%

ungroup()

# Composite factor with group + within-group rank (preserves grouped

ordering)

coef_df_clean <- coef_df_clean %>%

arrange(

factor(group, levels = c("Clinical Covariate", "Gene", "Gene

Treatment")),

order_within_group

) %>%

mutate(term_ordered = factor(term_clean, levels = rev(term_clean)))

# Forest plot

forest_plot <- ggplot(

coef_df_clean,

aes(x = exp(estimate), y = term_ordered)

) +

geom_point() +

geom_errorbarh(aes(xmin = exp(conf.low), xmax = exp(conf.high)),

height = 0.2) +

geom_vline(xintercept = 1, linetype = "dashed", color = "gray50") +

theme_minimal(base_size = 12) +

labs(

title = "Forest Plot of Individual Seed Model",

x = "Hazard Ratio (HR)",

y = "Term",

color = "Variable Type"

) +

theme(legend.position = "none")

print(forest_plot)

ggsave(

filename = paste0("./final_figures/wild_seeds/forest_plot_seed_",

seed, ".png"),

plot = forest_plot,

width = 7, # in inches
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height = 6,

dpi = 300 # high-quality resolution

)

}
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